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HIGHER-ORDER NUMERICAL SOLUTIONS USING CUBIC SPLINES

S. G, Rubin and P. K, KRhosla

Polytechnic Institute of New York
Farmingdale, New York

ABSTRACT

A cubic spliné collocation procedure has recently been
developed for the numerical solution of partial differential
equations. In the present paper, this spline procedure is
reformulated so that the accuracy of the second-derivative
approximation is improved and parallels that previously ob-
tained for lower derivative terms., The final result is a
numerical procedure having overall third-order accuracy for
a non-uniform mesh and overall fourth-order accuracy for a
uniform mesh. Solutions using both spline procedures, as
well as three-point finite difference methods, will be pre=-

sented for several model problems.

I. INTRODUCTION

In a recent study Rubin and Graves™ '

have presented a
cubic spline3'4 collocation procedure for the numerical solu-
tion of partial differential equations. This technique ex-
hibits the following desirable features: (1) The governing
matrix system is always tridiagonal so that well-developed

and highly efficient inversion algorithms are applicable;

(2) cubic spline interpolation leads to second order accuracy



for second derivatives, e.g., diffusion terms iﬁ the Navier-
Stokes equations. This order of accuracy is maintained even
with rather large non-uniformities in mesh width; (3) first
derivatives or convection effects are fourth-order accurate
for a uniform mesh and third-order with mesh non-uniformity;
(4) derivative boundary conditions can in many cases be applied
more accurately and with less difficulty than with conven-
tional finite~difference schemes; (5) a simple two-point
relationship exists between the spline approximation for the
first and second derivatives; and (6) unlike finite-element

or other Galerkin (integral) methods, which are generally not
tridiagonal, the evaluation of large numbers of gquadratures is
unnecessary.

Solutions have been obtained for a number of prdblemsl'2
with explicit, implicit and spline alternating direction
implicit (SADI) temporal or spatial marching procedures.
Moreover, for the viscous and potential flow problems consid-
ered, it was found that with the spline procedure there was
no particular advantage gained with the equations in divergence
form. In some recent studies it has been found that the
divergence form may be desirable with flux boundary conditions,
These results are described later in this paper.

Agreement of the spline solutions with exact analytic
results and very accurate finite-~difference solutions obtained

2

with a very fine mesh has been quite goodl' . All comparisonsl’2

with conventional three-point finite difference formulations



demonstrate the improved spline accuracy associated with

(i) the higher-order convection approximation, (ii) the treat-
ment of derivative boundary conditions, or (iii) the higher-
order accuracy of spline second derivatives (diffusion) when
specifying a non-uniform mesh. Solutions for the Burgers
equation, the two-dimensional diffusion equation and the in-
compressible viscous flow in a driven cavity are found in
Refs. 1 and 2,

In the present paper, the cubic spline procedure is
reformulated so that the accuracy of the second-derivative
approximation is improved and parallels that obtained for the
lower derivative terms. The final result is a combined spline-
finite difference numerical procedure having overall third-
order spatial accuracy for non-uniform meshes and overall
fourth-order spatial accuracy with a uniform mesh. In order
to differentiate the two spline procedures, we shall designate

’“ as spline 2 and the improved

the original spline formulationl
formulation presented here as spline 4.

As shown in sections II and III, the cubic spline colloca-
tion procedure involves a third-order interpolation polynomial
with‘the function and the second (or first) derivative of the
function as unknowns at each mesh point., Continuity of the
first (or second) derivative leads to the tridiagonal system
of eguations to be considered. In section IV, it is shown how
the familiar central difference second-order accurate finite-~

difference theory results from a quadratic spline interpolation

procedure, Using the earlier spline designation, the finite~



difference theory is classified as spline 1.

Recently, several higher-order finite~difference schemes
with similar properties have been proposed; i.e., the functions
and derivatives are considered unknown at each mesh point, or
the functions are collocated at three points instead of one.

The methods which have been termed Hermitian finite—differences'6

padé approximation7 or compact differencingB, and Mehrstellung9
have been developed for a uniform mesh and have somewhat lower
truncation errors than the five-point pentadiagonal fourth-ordexr

finite difference procedure. As with the spline formulation,

they remain of tridiagonal form.

The authors have examined these procedures, as well as a
fourth-order spline-on-spline method, and found them to be, in
fact, identical; i.e., any one can be derived from any of the
others. As with spline 4, these finite-difference or spline-
on methods are fourth-order with a uniform mesh and third-
order with a non-uniform mesh. The main differences are
handling of the boundary conditions, the relationship between
the approximations for the convection and diffusion terms, and
the truncation errors. The truncation errors for first deriv-
atives are identical. The truncation error for the second-
derivative to be discussed later for spline 4 is 50% smaller

than that found with the higher-order finite-difference or



spline-on-spline collocation formulae,

In order to evaluate the spline procedures, the trunca-
tion errors, stability limitations and effects of boundary
conditions will be discussed. Spline 2 is reviewed in section
II, spline 4 is introduced and discussed in section III, and
spline 1 is presented in section IV, The stability conditions
for all methods are outlined in section V. Solutions using
both spline procedures, as well as a three~point finite-difference
method, are presented for several model problems in section VI,
Both uniform and non-uniform meshes are considered. 1In each
case the analytic solution or a very accurate numerical solu-
tion is available for comparison purposes. The problems to be
considered include (1) a boundary layer-like solution of Laplace's
equation, where a spline relaxation method is applied, (2) poten-
tial flow over a circular cylinder with a spline successive
approximation procedure, (3) the weak shock solution for the
nonlinear Burgers equation by a two-step explicit or an implicit
spline integration, (4) divergence and non-divergence solutions
for the linear Burgers equation with flux and other derivative
boundary conditions, (5) the impulsive motion of right angle
corner (Rayleigh problem) with SADI, (6) the solution of the
two-point boundary value problem describing similar boundary
layer behavior, and (7) non-similar constant pressure boundary
layer solutions for large Reynolds number using physical variables,

The results will be summarized in section VII.



II. SPLINE 2 - REVIEW OF CUBIC SPLINE THEORY

Consider a mesh with nodal points such that
a=Xo<X1 <}<2 e e e %<}%+1=b’

and with

hi=xi-xi_l> 0.

Consider a function u(x) such that at the mesh points Xss
u(xi)=ui. The cubic spline is a function SA(ui,x)=SA(x) which
is continuous together with its first and second derivatives on
the interval [a,b], corresponds to a cubic polynomial in each
sub~interval xi_lfxixi, and satisfies SA(ui;xi)=ui. In the
usual spline terminology, spline 2 is defined as a cubic spline
of deficiency one, since all but one of the three polynomial
derivatives are continuous.

If u(x) and its derivatives are continuous, it has been
shown that the spline function SA(x) approximates u(x) at alli
points in [a,b] to fourth order in max hi' First and second
derivatives of Sé(x) approximate u’(x) and u”(x) to third and
second order, respectively. See Ahlberg, Nilson and Walsh3 for
detailed proofs of convergence.

If SA(X) is cubic on [xi_l,xi], then in general,

SY(x) =M, - () 4 M, (——d=l)
A i=1 hi i hi ’

—a
where Mi_ SA(xi)'

Integrating twice leads to the interpolation formula on

(%, _10%; 1



(x.-x)° (x-%. )2
_ i i-1
SAM; 3 TeR Tt MiTE
i i
a - 3 -
(@ _ Mi—lhi) (xl X) ‘(am Mih ) (x xi—l)
i-1 6 hi 6 hi ¢

(la)

The constants of integration have been evaluated from SA(xi)=ui

and S, (x; ) =u SA(X) on [xi,x.+l] is obtained with i+l

-1 i-1° i

replacing i in (la).

The unknown derivatives M, are related by enforcing the

continuity condition on‘SA(x). With Sé(x;)=m. on [i~1,i] and

i
7 + — + . - — + — .
SA(xi)—mi on [xi,xi+l], we redquilre mi mi mi. We find for
i=1, eeee,N,
i A i £5 1 wo ary o Wagy) o (970 )
6 i-1 3 i 6 i+l h, h. y
i+l i
(1b)
Additional spline relationships that are easily derived are
listed below:
3(u, ,,-u.) 3(u.-u. .)
E]:._ mi—l+2 (El— + A 1 )mi+ 1 mi+l_ hg_+l 1 + lhzl—l .
i i i+l i+l i+l i
(lc)
= _itl .
Mipp M= T (MM 40 (1d)
h. h. u.~-u.
= L _i i "i-1
"3 MY M TR (le)
h, h. u. ~-u.
- _ _i+1 N i+l 1
my 3 Mt T My f R ; (1£)
i+l



-1 i Ti=1
M. = + -6 -] 7 (lg)
i hi hi hi
o Amy 2ms 1y Yir1TYy
Ml_ - B ~ & +6 + . (1h)
i+l i+l i+l

Eds. (1b) or (lc) lead to a system of N equations for the N+2
unknowns Mi or m., respectively. The additional two equations
are obtained from boundary conditions on mo, mN+l or Mo’ MN+1
The resulting tridiagonal system for Mi or m, is diagonally
dominant and solved by an efficient inversion algorithm3.

Sspline 2 for Solving Partial Differential Equationsl'z

If the values u; are not prescribed but represent the solu-
tion of a quasi-linear second order partial differential equa-
tion, ut=f(u, U, uxx)' then an approximate solution for u; can

be obtained by considering the solution of

= f(ui,mi,Mi) R

This formulation is designated spline 2, If the time derivative

is discretized in a simple finite-difference fashion, we have

un+l_un
L2t - (-9 £y ge*l (2a)

=0, explicit; 6=1, implicit; 6=%, Crank-Nicolson. For the
explicit integration the stability limitations are quite severe,
see Refs. 1,2 and section VI. Therefore a two-step procédure is

considered and is given as:




&;_
{
o8
+
‘.—l
1
[orf
g
*

i i n
Step 1l: AT = £
(2Db)
n+l n
u. ~T-u.
i i _ =n+l
Step 2: AT = f
Example:
Consider the linear Burgers equation
ut+ﬁux=vuxx ; u=u(x,t) ; v=vix,t) . (3a)
With (1b) and (lc¢) we obtain a system of 3N equations for
3(N+2) unknowns (see Refs. 1,2 for further details on the
derivation). The system (2) can be writtenT as
+1 +1 +1_
BVI p+BiVY HC VI =D ViE, [ovy 1+vi 1T, (3b)
where
0 0 Yq
Ai= [—l/hi 0 hi/6 :

3/hi 1/hi 0

%y ay Qo
B;= [(l+l/o)/hi 0 (c+l)hi/3 :
—3(1-1/05)/hz 2(1+1/c)/hi 0
N
B 0 0 Y2
C.= - O -1‘—1-3.—'._+-]_'.
1 hin 6
-3 1
he 5 0 i
L i+l i+l -~

*1t is possible to treat the viscous terms (Mi) implicitly (6=1)

and the convection terms explicitly. As shown in Refs. 1,2, the
stability of the two=-step procedure fior viscous flows is improved.

TA number of variations on this system can be derived with the
relations (1).
9



0 0 84
El=[() 0 0 ]
0 0 0
T
vi=|:uil mil Ml] ’ (3c)
and
O=hi+l/hi H Y1=Y2=61=0
_ . _ _—n+l n+1l .
ab—l : 1—6ui At 3 a,= evi At s
P =1 ; py= =(1l-0)UTAt ; po=(1-0) oAt (3d)
o-l i ;= u; At 5 ope= vy At .

A significant advantage of the spline 2 formulation is that with
expressions (1) it is possible to reduce the 3x3 matrix system
(3) to a scalar set of equations for Mj alone. The details of
this reduction process are found in Refs, 1,2.

For equations with two space dimensions such that ut=f(u,ux,
uy’uxx'uyy)' a spline alternating direction implicit (SADI)
procedure has been presented by Rubin and Gravesl'z. A spline
successive approximation method can also be simply formulated.
Both techniques are discussed later in this paper where several

example problems are presented.

Truncation Error

For interior points, the spatial accuracy of the spline

approximation can be directly estimated from the formulas (1lb)

10



el

and (le) or (1f). Expanding m,, M and us in Taylor series
and assuming the necessary continuity of derivatives for u(x,y).
we obtain, with o=hi

+1/hi’

(uxx)i=Mi+(uiV)ih§(03+1)/12(o+1)

~(u") ;h3 (0-1) (20%+5+2) /180

~ (u"%) ;h% [0°/360+ (0-1) ? (70°~20+7) /1080]

+ 0(h}) , (4a)
and
_ iv a -
(ux)i—mi+(u )ihio(c 1)/24 +
v +
+(u )ih; o[1+0(0o-1) J/180 + 0O(h$) . (4b)
10 .. .
Fyfe has presented similar relations,

for constant hi, in his collocation analysis of cubic splines
for the solution of two point boundary value problems.

Therefore, the spline approximation with a non-uniform mesh
is second~order accurate for M. and third-order for m, . For a
uniform mesh m; becomes fourth-order with M. remaining second-
order accurate, In the next section a finite-difference expres-
sion for (uiv)i is used to increase the accuracy of My and hence
the overall accuracy of the procedure., With this modification

this formulation will be termed spline 4.

TIf (1c) is used to evaluate the truncation error for m,, the

constant 24 in the second expression on the right-handlside
becomes 72. For the uniform case, (4b) is recovered in all
cases,

11



ITI., SPLINE 4 - DERIVATION AND DISCUSSION

In order to improve the overall accuracy of the spline 2
formulation, it is necessary to reduce the order of the trunca-
tion error for (uxx)i in (4a). Although a number of procedures
are possible, we have chosen a very simple modification, whereby
the error term in (4a) for (uiv)i is approximated by a three-
point discretization for M, . This approximation is first-order
accurate with a non-uniform mesh and second-order with a uniform
mesh. Therefore the spline approximation for (uxx)i is improved,
and parallels that for (ux)i7 i.e., third-order accuracy is
achieved for a non-uniform grid and fourth-order accuracy for
uniform mesh. This improvement leads to what is termed spline
4, or a quintic spline of deficiency three.

The development of spline 4 is as follows: The expression

(4a) can be rewritten in the form
- 2
(u ) =M +hio(o+l) A(M ) /1240 «c-l)hi,h;) . (5a)

where A=(1+03)/0(1l+0)2.

The familiar three-point discretization formula is

_ 2
M) 17 T RT Mygq ~ (LrOI M Hom; ) ]

~(o=1)hy (M, ), /3-h2 (1+0%) (47) /12 (140)40(h3) .  (5b)

12



Therefore, (4a) or (5a) becomes
(u ) =M, +(8/6) (M, ~(1+o) M +oM, )

+7h§(1+02)(o—l)(uv)i/180-hi(uVi)i[03/360

+(o~1)2(70%~20+7)/1080] + O(hi) . | (5¢)
With (4b),
(u,);=m;+0 ((o-1)h3,ns) ' (54)

and we obtain a uniform higher-order approximation termed
spline 4. When c¢=1, spline 4 is fourth—-order accurate and the
truncation error of (5b) is smaller than that obtained with

-9

Hermitian or Pade methods5 , which are in turn smaller

than the error obtained with five-point finite-different

discretizations.

In the spline 4 procedure the relations (lb-1lh) still apply:;
however, the interpolation polynomial is no longer applicable as

spline 4 represents a higher-order interpolation. The governing system

1-

It is possible to apply (5b) to (4b) to make (u ) fourth-order
even with a non-uniform mesh.

#Higher—order procedures, €.9., spline 6, can be derived in a

similar manner , and spline 2 is recovered from spline 4 with
A set equal to zero.

13



remains tridiagonal. Unlike spline 2, where the system can be
reduced to that for M, alone, the appearance of off-diagonal
terms in (5b) restricts the reduction process to a 2x2
system in (ui,Mi).

For the linear Burgers equation the system is still of

the form (3b) with

vi= - vitleaton/e : yv,= - Vi Teatass ;
1 2 1
+

0= = vi Loat (1-(1+0) 0/6) ;

pe= (1-9)vi ' hat (1~ (1+0) a/6) ;

5y v2+l(1—6)At A6 (6)

All other entries in (3c,3d) are unchanged.

1V, FINITE-DIFFERENCE THEORY/SPLINE 1

If the procedures given previously for spline 2 and spline 4
are repeated for a quadratic polynomial interpolation with both
derivatives continuous (a quadratic spline of zero deficiency),

we find on [xi_l,xi],

SA(X)=ui(X—xi—l)/h+ui—l(xi—x)/h+(ui-ui—l-hmi)(X—xi—l)(Xi—x)/hz'

where

= — ’ =
S,(xy)=us, S, (x; j)=u; ;. S (x;)=m.,

and
= _ Hilar Y= o - - 2
M, = SA(xi)— 2(ui us g mih)/h .

14



, 3 , _
On [Xi'xi+lj' with SA(xi S ,(%;)=u; and §(x;)=m,

+1) 705417
we obtain

+_ //+__ ~
M, = SA(xi) = 2(ui u

2
N +mih)/h o

i+l

From the continuity of the second-~derivative

Mt = M7
i i
and therefore
my= (Wy4y795)/20 .

The expression for Mi becomes

MT:M-.' = (u,
1 1

— 2
i41720 %0y ) /0%

Therefore the quadratic spline of zero deficiency leads to the

central difference expressions.

V. STABILITY

For the linear Burgers equation (3), with u,y constant, the
interior point stability can be assessed with the von Neumann
Fourier decomposition of the system (3) for hi=h=constant.

. i
wWith v?+riwgexplw(xi+rh), I=(-1)", (3) becomes
n+l n n+l_ n
T{Ui —P{Wi or Wi —GiWi ’

-1 R . . . .
where GiﬂTi Pi is the amplification matrix. The von Neumann

condition necessary for the suppression of all error growth

<15



requires that the spectral radius p(G;)<l. The eigenvalues of
Gi are Ki'

For the one-dimensional equation (3), three numerical pro-
cedures were considered: (1) convection (mi) and diffusion (Mi)
explicit, (ii) convection explicit, diffusion implicit (two
steps required for inviscid stability), and (iii) diffusion and
convection implicit, With explicit convection, (i) or (ii),
both divergence and nondivergence forms of the equations have
been evaluated in Refs, 1 and 2.

The stability conditions imposed on these schemes is determ-~

ined from

a1 <1

(i) Explicit convection and diffusion: ¢=0 in (2a,3).

Spline 21'2: lxi|2=(l—65(l-cosm)(2+cosm)—1)2+c2§2§l, where

g=vAt/h=, c=uAt/h, $=3sine/ (2+cosy), ¢=wh. Necessary stability
limits are

(a) B <1/6 ,

® o= (377,

(0) Ro=e/B=iin/v < 2(3)7 . (72)

These results are more restrictive than the limits found for the

forward time central space explicit finite-difference method12

or spline 1, which are

(a) 8 <1/2, (b) c <1, (c) RC < 2.

16



Spline 4: |A|2=(1-(5+cosyp) (L-cosg) B/ (2+cosy))P+ (3csing/

(2+coswp))®<<l, so that necessary stability limits are
® 2’4

(a) g<l/4, (b) 05(10)%/6 . (@) Rc5(40);5/3 . (7b)

Once again these conditions are somewhat more restrictive than
those obtained with second~order finite-differences (7b). The
Padé finite-difference limitation c5(6)%/6 is even more restric-
tive, see Appendix of Refs. 1 and 2. It is significant that in
all cases the explicit method is unconditionally unstable for

inviscid flow; i.e., p=0.

(ii) Two-step explicit integration (2b):

This procedure, which alleviates the inviscid instability
found in (i), is a two-step predictor-corrector method (see
Refs. 1 and 2) and is similar to the Brailovskayall two-step
finite~difference technigque. For pR=0, we obtain

=1

min_[(2+cosm)(3sinm)—1]

1
e

C _S ) =(3) - (7C)

min
This result is more restrictive than the c¢<l1 CFL condition found
for the Brailovskaya finite-difference method.

For B#0, the effect of diffusion when treated implicitly is
to improve the inviscid stability limitation. For u-0, the
1,2

method is unconditionally stable . Since the convection terms

are unchanged, spline 4 has the same stability condition.

(iii) Implicit convection and diffusion:

The spline 2 and spline 4 procedures are unconditionally

stable if 6>1/2 in Egs. (2), (3).

17



(iv) SADI:

In Ref., 1, the interior point stability analysis is extended
to the two-dimensional SADI procedure; unconditional stability
is demonstrated.

Although the implicit procedures lead to unconditionally
stable formulations, as with finite-difference methods, the tri-~-
diagonal system may not be diagonally dominant. In this case
the inversion algorithm3 may lead to large error growth. Diag-
onal dominance can be achieved by a spline adaptation of the
finite~difference procedure given in Ref. 12. For all the
problems treated here this modification is unnecessary. In other
applications it will play a significant role if accurate solu-

tions are to be obtained.

VI. RESULTS

Several model problems have been considered in order to
evaluate the cubic spline collocation methods presented herein.
For each of these problems an analytic solution or reliable
numerical solution is available for comparison purposes. Spline
interpolation (spline 2 and spline 4) is used to approximate the
spatial gradients. For the one~dimensional Burgers equation the
integration procedure outlined in Section II is adopted. Implicit
or two-step explicit methods are used. For the two-dimensional
diffusion equation, solutions are obtained with the SADI formula-
tion. The Laplace equation in cartesian and polar coordinates
is evaluated with a spline successive approximation procedure.

Finally, the similarity equations for the flat plate boundary-layer

18



and the two-dimensional stagnation point are solved by direct
integration of the resulting two-point boundary value problems.
Solutions are obtained with both uniform and non-uniform
meshes. Three-point finite-difference calculations are included
in order to assess the relative increase in accuracy associated
with the higher-order procedures., The results are presented in
tabular form so that meaningful comparisons are possible.
A. Burgers Equation
The nonlinear Burgers equation (3a), with x=x, u=u(x,t)
and x=x-(1/2)t, becomes

ut+(u—l/2)ux=\)uXx (8a)

with v constant and the boundary conditions

u~l as x- -oo and u-0 as x—0. (8h)

The steady state solution of (8a) is

u=[1-tanh(x/4v) 1/2 (8c)

Spline 2 and the finite-difference solutions of (8) have
been discussed in Refs. 1 and 2. Both implicit* and two-step
explicit integration techniques, as outlined in Section II,
have been applied successfullyl'z. Spline 4 solutions have now
been obtained with the implicit* and/or two-step procedures of

(2a), (2b). The system (3) with the coefficients (6) are con-

sidered. 1In the actual calculations the 3x3 system (3) is

*
The nonlinear coefficient u is treated iteratively or with
gquasi-linearizationls?2,
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reduced to a 2x2 system, m, in Vi is eliminated with (le) or

(1f) . The boundary conditions (8b) on u,, Uy, are specified

at x=x , with x >3, The boundary conditions on M. are ob-
max max— i

tained from the third-order accurate relation

(u = M, ,—M. (92)

xx)i+l-(uxx)i

where i=1 or N.
The boundary condition (9a) can be applied in two forms.

These are outlined for the boundary i=1l:

(2)  (u,)1=(u,,) 2= (M -y)

With (uxx) evaluated from (5c), we obtain

2
(u, ) 1=M; +(8/6) (Ms= (1+0) M +aMy ) , (9b)

where o=h3/h2. From the governing equation (8a),
(uxx)1=(ux)1/2v=m1/2v

so that with (1f),

m1=-h2M1/3—h2M2/6 + (ua—l)/h2
and (9b) becomes
2.

M1(2v+ch/3+h2/3)+M2(ha/B—v(l+c)A/3)+(vA/3)M3—ue/h2=—l/h

(9¢c)
(b) An alternate form of (9a), relating only the two points,
i=1 and i=2, can be derived by evaluating (uxx)2 from (8a). The

temporal discretization is given by (2a). We obtain

alM?+l + a2M2+l + asug+l = a, (od)
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where

a,= At (v (uy+0.5)h,/6) ;
a_=-at(v-(u)-0.25)h,/3);
as= (1+at (up-1)/hy) ;
a,=(u+(ul-1) at/h,) .

For spline 4, A=(l+o%)/g(1+0)?. For spline 2, set A=0 so that
(9¢c) is second-order accurate. Ed. (9b) is third-order accurate
for both spline 2 and spline 4, Similar relations are obtained
for the other boundary, where uN+l=O.

The condition (9c) is independent of the time step At and
somewhat less cumbersome. It was found that the accuracy of
the solutions and the time to attain a converged steady state
solution were virtually insensitive to the choice of the boundary
condition (9¢) or (2d). This conclusion remains unchanged if
the higher order effects in (9b), i.e., those terms multiplied
by A, are treated explicitly in (9c). 1In this way (9c) reduces
to a two-point implicit formula. In several cases the simpler
spline 2 boundary conditions were applied with the spline 4
procedure; the solutions always fell between the results of
spline 2 and spline 4, but generally closer to fhose of spline 4.
Therefore, if simplicity of boundary conditions is desired this
is a reasonable approximation.

Typical results are shown, for v=1/8, 1/16, 1/24 on Tables
1-5. The increase in accuracy as one progresses from the finite-

difference results to those of spline 2 and finally to spline 4
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is apparent. This is particularly true with the non-uniform
meshes of Tables 2 and 3. For the conditions of Table 3, the
finite~-difference calculations with the two-step explicit pro-
cedure did not converge. An oscillatory behavior was observed
after 3200 iterations. In certain cases, where hi is relatively
large, the nature of the truncation errors (4a,4b) of spline 2
and spline 4 is such that a local value obtained with spline 2
may be as accurate or more accurate than that obtained with
spline 4. These are exceptional cases, however, and never occur
for hi<<l' A percentage error plot for the results of Table 1
is shown on Figure 1. ue(x) denotes the exact solution (8c).

Solutions for other vy values are of a similar nature and
therefore have not been included here.
B. Linear Burgers Equation

Consider the equation

u_ = -
u tva 0, on O0<x<1 ,

with boundary conditions u(l)=1 and on x=0, vux+u=0. The exact

solution is ue(x)=exp(l-x)/v. In some unpublished work by
George J. Fix*, it was shown that with this flux boundary
condition linear finite element theory naturally satisfies the
required conservation condition at the boundary and therefore
leads to more accurate solutions than obtained with non-divergence
versions of spline 2 or conventional finite-difference theory.

If finite-difference theory is developed in divergence or

conservation form, the resulting equations are identical with

*Institute for Computer Applications in Science and Engineering
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those of the linear, second-order accurate, finite element
method. If spline 2 isg recast in divergence form the solutions
are considerably more accurate than the non-conservation results
and also improve upon the conservation finite element (finite-
difference) calculations. Therefore, with the flux boundary
condition it appears that divergence form may be required if
accurate spline solutions are to be obtained. On the other

hand, if a modified derivative boundary condition was considered
in lieu of the flux condition, the sensitivity to divergence form

was no longer apparent., It is possible therefore that the flux

‘condition represents a singular case.

The governing systems of equations and the boundary condi-
tions for the different formulations are as follows:

Finite-Difference/Non-Divergence Form

v(ui+l+ui_l—2ui)/h + (ui+l—ui_l)/2 =0 (10a)
At x=1, uN=l (10b)
At x=0, viu, ~ u_l)/2h + uo=0 (10c)

from (10c) with the difference equation (10a),

Eliminating u_,

we obtain
2v2(u1—uo)/h3+uo(2v/h—l) =0 , (104d)

Finite-Difference/Divergence Form = Finite Element

(vux+u)x= 0

heref . =
Therefore, (Vux+u)1+% (Vux+u)i—%
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or v(ui+l+ui_l-2ui)/h + (ui+l-pi_l)/2 =0 (11a)

The governing equation (lla) is identical with the non-divergence

equation (l0a). The alterations appear in the boundary conditions

At x=1, uN=1
At x=0, (vux+u); = 0, Therefore,
2
v(ul—uo)/h + (u1+uo)/2 =0 . (11b)

The boundary condition (11b) differs from the non-divergence
condition (10d).

Spline 2/Non-Divergence Form

The governing edquation (1l2a) is combined
\)Mi+mi =0, (12a)
with the spline relations (l). The boundary conditions are
u_N_zl’ \Jmo+uo =0 . (12b)

Spline 2/Divergence Form

The governing equation (l3a) is combined

(vm+u)i+l= (\)m+u)i_1 (13a)
with the spline relation (lc). The boundary conditions are
and

vmo+uo+a(vm1+u1) =0, (13Db)

where o=0 corresponds to the exact boundary value and

o=l corresponds to an averaged boundary condition.
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The results of these calculations are shown on Table 6.

It is seen that the non-conservation (NC) solutions with ten
mesh points (N=10) are rather poor when compared with either

the finite element or spline 2 conservation (C) solutions. It
is significant that the spline divergence solutions, for both
0=0 and og=1, are considerable improvements over the finite-
element results. As the number of mesh points increases the
non-divergence solutions do show some improvement, with spline 2
more accurate than finite-differences, but these results are
still less accurate than finite-element solutions. The ten point
spline 2 divergence form g=1 solutions are about as accurate as
the 50 point finite element results.

Also shown on the table are ten point solutions with some-
what modified derivative conditions at x=0, The exact solution
is unchanged. These derivative boundary conditions were treated
in much the same manner as the flux condition for each of the
procedures., For the finite-~element solutions an average condition

was applied. Significantly the large differences between diverg-

ence solutions no longer occur. The spline solutions are always

the most accurate, with a small increase in accuracy when diverg-
ence form is assumed.,
C. Linear Corner Flow

The two~dimensional diffusion equation

~ L —
u, = Re(uxx+uyy) , u=u(t,x,vy) (14a)

with the initial condition u(0,x,y)=0 and boundary conditions
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u(ts0,0,y>0)=1 , u(t>0,x%x>0,0)=1
u(t,x,v)-0 as x,y-o (14b)
has the exact solution

u=l-erf X erf Y , _ (l4c)

where X = §(Re/t)%' Y = %(Re/t)l/2 .

This solution describes the impulsive motion of a right-
angled corner formed by two infinite flat plates and results of
the SADI spline 2 calculation have been presented in Refs., 1,2.

The SADI procedure for the diffusion equation (1l4a) for both

spline 2 and spline 4 is given as follows:

Step 1: u?;% = i+ «uxx)?;% +(u ) 55) 6t/ (2R) (15a)
Step 2: uggl = ugg% + «uxx)gg% +(uyy)?§l)At/(2Re) (15b)
where (v ) i3 Mij+(AX/6) (Mi+l'j-(l+ox)Mij+GXMi_l’j) (16a)
and () 557 Ly5*+(8,/6) (Ly 5= (lbo )Ly 40Dy o o) (16b)

and M.. each satisfy a tridiagonal equation of the form

(1b) .
- ) 2 ., = 3 2
A (1+02) /o (140, )% ; Ay (l+oy)/oy(l+oy)
O T Big1/My 70y = kg /Ry hyExexg g kgmys-ys .

The spline 2 formulation is recovered with AX=Ay=O. The boundary

conditions for u, are given by (14b). The boundary conditions
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for Lij'Mij are obtained from (16) with (uxx)ij=(uyy)ij=0 on

the boundaries, or from (%9a) with (u ) obtained from (l4a).*

xx’i+l,]
The solution for step 1 is obtained with the tridiagonal
2x2 system for Mij and uij_as described by (1l5a) and (1b). A
similar procedure for Lij,uij is required for step 2.
The solution for Re=lOOO is given on Table 7. A non-uniform
21x21 mesh with ok=oy=l.5 was prescribed. The step size At=0.01l.
The solution is shown for t=2.0. All of the solutions are

reasonably good for this case, but once again the spline solutions

are somewhat better.

D. Laplace Equation

The Laplace equation

uxx+uyy= 0 ; u=u(x,vy) , (17a)

with the boundary conditions u(0,y)=u(l,Y)=0; u(x,0)=sinTx;
lim y—~oo u(x,y)=0
has the solution

u(x,y)=(sinmx)exp(-1y) . (17b)

This boundary layer-like problem was chosen in order to
evaluate the accuracy of the spline procedures, in particular
with non-uniform meshes, when large gradients exist only over a
limited region. In addition, this problem will serve as a
prototype for spline integration using successive approximation

(relaxation) procedures,

*
This procedure has been demonstrated for the Burgers equation
by the discussion leading to (9d).
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Using the general expression for second derivatives (16),

Eq.

(17a) can be put into a spline form.

With the tridiagonal

relationship for Lij and Mij (1b), this leads to a 3x3 system

for the vector Vij at all interior mesh points:

Bi5Vi,5-1*B13Vi3%C5V4, 541 i3V, 37 B3V, 57

where

V..
1]

ij

ij

u. .
1]

M. .
ij
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0 0 AX/6
Eij = 0 0 0
s 0 1

The solution is obtained with a successive point relaxation

procedure,
(k+1) _ -1 (k+1) (k) (k+1) (k)
Vi T Bij [Aijvi,j-l * €35V, 54 PigVia, 5t Eijvi+1.,j]
(19)

where the superscript k represents the iteration parameter,
The system is diagonally dominant and the eigenvalues of the
amplification matrix, see Section V, are all less than or equal
to one, The results of this compuation are presented in Table 8,
The values of uy(.S,O) and u(.5,h2) are compared with the exact
solution (17b). Also included in this table are the results
obtained with the three~point finite-~difference approximation
for u . and uyy' In order to make a more definitive comparison
between the spline and finite-~difference solutions, the surface
value of uy in the latter case was cobtained by spline fitting
the numerical values of u(x,y). In one case noted on Table 8,
a three-point end difference formula was applied. All of the
calculations were performed with 10 mesh points in the normal
or y-direction, In certain cases, spline 2 was used in the y-
direction and spline 4 in the x-direction. These solutions are
noted accordingly.

The spline 4 results are the most accurate in all cases.

For a uniform mesh the finite~difference and spline 2 results
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are of equal accuracy as there are no convection effects in the
problem., Moreover, if the spline 2 and the finite-difference
solutions are averaged, the spline 4 results are closely approx-
imated. For a non-~uniform mesh the improved accuracy of spline 2
over the finite-~difference approximation is now apparent.

The spline 4 results are remarkably accurate with o=1.7,
h,=0.1 and ymax=28.66. For this mesh there are only four points
in the region 0<y<l as compared with a uniform mesh (h=0.1) and
ten points. The coarse mesh, spline 4 results are more accurate
than the uniform mesh finite-difference solutions.

The 1.7/.2 notation for o means that o=1.7 for hi<0.2.

For h,>0.2, o becomes unity. In this way the mesh width does

not exceed a specified maximum value, This type of mesh alignment
is useful in boundary layer problems, where a fine grid is desired
near the surface, and a uniform but coarser mesh is required in
the outer inviscid regions. This procedure is also applied for
the boundary layer solutions in Section VI.F. An error plot is

given on Figure 2.

E. Potential Flow Over a Circular Cylinder

The governing equation in cylindrical coordinates for the

potential flow over a circular cylinder is given by

1 1 —
urr+ p ur+ Py uee =0 o (20)

The boundary conditions are ur(l,e)=0 and lim u(r, 6)~rcosg. The
¥ ~00
exact solution of Eg. (20) with these boundary conditions is

u=(r+%)cose. Egs. (17a) and (20) differ only by the appearance
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of the u. term which is discretized by the relations (le) or
(1f) . The resulting 3x3 system for uij’ Lij and Mij is of the
form (19). The coefficient matrices in the present case will
be somewhat altered by the u,. term,

The results of the iterative solution are presented in
Tables 9-11., As in the previous examples, the finite-difference
solutions are obtained by using three-point central difference
formulas, In Table 11, the slip velocity on the fore surface

of the cylinder is presented. The superiority of the spline

solutions over those resulting from finite~difference discretiza-

tion is evident. It should be noted that the slip velocity in

the finite-~difference case is obtained by using a three-point
central difference formula, while the spline solutions require
only the two-point formula (le). The higher accuracy of the
two-point spline formula over the three-point finite-difference
relations can be of considerable importance for problems with

derivative boundary conditions.

F. Similarity Boundary Layers

The boundary layer edquations for the flow over a flat plate
(B=0) and the two-dimensional stagnation point (B=1) can be
reduced to the following ordinary differential system by using

appropriate similarity transformations}4_

u’+fu’+g(1-u®) = 0 (21a)
£/ = u (21Db)

The boundary conditions are

£f(o)=0, u(o)=0, 1lim u(x)=1.0 (21c)
X~QD
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Accurate numerical solutions have been reported in the litera-~
ture [see Rosenheadl4].

In the spline 2 and spline 4 formulation, Eg. (2la) is re-
duced to a 2x2 system for u; and Mi and the two-point boundary
value problem is solved subject to (2lc). For the first-order
equation (21b), we obtain the following spline approximation
from (1f):
hiv1

f.+h u,+ —=——(MF.+,5MF,
i i+

fim=Eithy it 3

1) (22)
where MFi=(u’)i for spline 2. For spline 4, the following

relation to evaluate i is easily derived from (le) and (1£f):
ME; g HE =2 (@) g 0= () ;) /Ry (23)
— ’

Egs. (22) and (23) give rise to an ipitial value problem fof fi
and MF . which is solved by a marching procedure. Eq. (22)
leads to third-order accurate expression for fi; therefore, for
non~-uniform meshes and third-order accurate solutions, this
approximation is adequate even for spline 4. For the finite-
difference solutions, a second-order accurate two-point formula
for fi' which is consistent with the accuracy of the overall
scheme, is obtained with the trapezoidal rule. For p=1, the

nonlinear term u® is treated by guasilinearization so that

(WElye oy (K (1) | (k)

kX is the iteration parameter.
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The results of these computations for both uniform as
well as non-uniform meshes are tabulated in Tables 12-16. The
shear at the wall is proportional to f£”(o) and this term has
been evaluated for a variety of meshes. The results are given
on Tables 15 and 16 for B=0 and g=l1, respectively. Finite=-
difference solutions for u; are obtained by using the three-
point central difference approximation.

As noted previously, the notation 0=1.8/1 means that c=1.8
until hi reaches 1.0, at which point o=1.0. h, is the first.
mesh width off the wall x=0; N is the total number of mesh
points. Ny is the number of mesh points in the boundary layer
defined by x<6. At x=6, |u-1.0|<10"".

=0 Blasius solution:

The spline 4 solution for N=61, h,=0.1 and o0=1.0 is almost
identical with the "exact" solution of f”(o)=0.469600.l4 If
spline 2 boundary conditions are used with a spline 4 interior
point formulation,f’(0)=0.469608. As previously noted, this value
lies between the spline 2 and spline 4 results. With o0=1.8/2,
hy;=0.5, N=21 and only 5 points in the boundary layer (Ng=5),
the spline 2 value of £”’(o) is in error by only 2%. For the
larger h, values the spline 2 solutions are ever. more accurate
than those found with spline 4. Similar behavior was observed
with Burgers equation in Section VI.A. An error plot is given

on Figure 3.

B=1 stagnation point flow:

For B=0, the exact solution has u”“(o)=u’V(0)=0 and there-

fore the inherent lower-order accuracy of the finite-difference
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calculation is somewhat obscured near the wall x=0. For the
stagnation point solution where f£”(0)=1.232588, the improvement
associated with the spline formulation is clearly demonstrated.
Therefore, it would appear that spline integration should be

extremely useful for boundary layer problems,

G. Non-Similar Boundary Layer Analysis
As a final test of the spline procedures the constant

pressure boundary layer edquations written in physical variables

(x,v) were considered:

ua + vu. = R _u
X Y e Yy

The boundary conditions are
y:o: u:v:o
y>>1 u -1

The initial conditions were given by

1.0, y#0 and u(o,0)=0

1l

u(o,y)
v(o,y) =0

The equations were integrated for a Reynolds number Re=10% and
a non~uniform mesh of ten points normal to the surface. The
solution for the normalized skin friction is shown on Figure 4,
The value Ng denotes the actual number of points within the
boundary layer, The same criteria of Section VI.F was applied.
As the boundary layer grows with distance x, Ng increases.

With 6 to 7 points in the final boundary layer profiles, the
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spline 4 solutions are quite accurate.

VII. SUMMARY

It has been demonstrated that higher-order calculation
procedures using cubic spline collocation provide accurate
solutions to a number of model problems. The spline methods
termed spline 2 and spline 4 can be used for two-point boundary
value problems, as well as implicit, explicit, two-step, ADI
and iterative integration procedures.

Spline 4 is fourth-order accurate with a uniform mesh and
third-order with a moderate non-uniform mesh. Spline 2 is
second-order accurate for diffusion terms and fourth-order
(third-order) for convection with a uniform (non-uniform) mesh.
Derivative boundary values are obtained directly without the
need for end differencing. For implicit linear systems, the
spline methods remain unconditionally stable.

The results confirm the higher-order accuracy of the spline
methods and lead to the hopeful conclusion that accurate solu-
tions for more practical flow problems can be obtained with

relatively coarse non-uniform meshes.

There has been no attempt to optimize the temporal inte-
gration procedure so as to minimize computer times or increase
temporal accuracy. The finite-~-difference calculations run 20%
to 25% faster than the spline integrations. When spline fitting

is used to evaluate finite~difference derivatives, as in
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I

Section VI.C, the computer times are comparable., It is antici-

pated that the reduced mesh requirements with these spline

methods will result in a net improvement in computer storage

and time,
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TABLE

SOLUTION OF BURGERS EQUATION

v=1/8, 0 =10, 3| EQUALLY

SPACED POINTS

X

u

F O.

SPLINE 2

SPLINE 4

EXACT

0

-0.2
-0.4
-0.6
-0.8

1.0
1.2
1.4
1.6
1.8

0.5000
0.6999
0.8447
0.9269
0.9673
0.9857
0.9938
0.9973
0.9988
0.9995

0.5000
0.6860
0.8290
0.9160
0.9620
0.9830
0.9930
0.9970
0.9990

0.9990

0.5000
0.6900
0.8322
0.9170
0.9609
0.9820
0.9918
0.9963
0.9983
0.9993

0.5000
0.6900
0.8320
0.9170
0.9610
0.9820
0.9920
0.9960
0.9980
0.9990
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TABLE 2

SOLUTION OF BURGERS EQUATION
v=1/8,0 =12, IS5 POINTS

>0 | ED. |SPLINE 2 |[SPLINE 4 | EXACT
O |0.5000 | 0.5000 | 0.5000 [0.5000
-0.3859 [0.9510 | 0.8214 | 0.8297 |0.8240
-0.8494(1.0030| 0.9778 | 0.9654 |0.9676
-1.4060/0.9990 | | 0004 | 09951 |0.9964
-2.0750| 1.0 1.0 0.9989 |0.9997
-2.8770| 1.0 1.0 0.9999 1.0
-38420| 1.0 1.0 0.9996 1.0
1.0 1.0 1.0

-5.000

1.0
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TABLE 3

SOLUTION OF BURGERS
EQUATION. v=1/8,0 =I.8,

15 POINTS

U | SPLINE 2 [SPLINE 4 | EXACT

0 |0.5000 |0.5000 | 0.5000
-0.0662 | 0.5740 | 0.5691 |0.5659
-0.1855 | 0.6986 | 0.6858 | 0.6774
-0.4001 | 0.8695 | 0.8452 | 0.8321
-0.7864 | 1.0012 | 0.9689 | 0.9587
-1.4818 | 1.0165 | 1.0083 | 0.9973
-2.7334| 1.0267 | 1.0257 | 1.0
-4.9864| 1.0 1.0 1.0
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TABLE 4 SOLUTION OF BURGERS
EQUATION: »=V/16, o=1.0,

19 EQUALLY SPACED POINTS

SPLINE 2 [SPLINE 4

EXACT

-0.2
-0.4
- 0.6
-0.8
- 1.0
- 1.2

0.5000

0.9000
0.9878
0.9986
0.9998
1.0

1.0

0.5000
0.8231
0.9641
0.9952
0.9995
0.9999
1.0

0.5000
0.8356
0.9617
0.9916
0.9982
0.9996

0.9999

0.5000
0.8320
0.9608
09918
0.9983
0.9997

0.9999
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SOLUTION OF BURGERS
EQUATION: »=1/24,¢=1.2,
3| POINTS

TABLE 5

SPLINE 2

SPLINE 4

EXACT

-0.0688
-0.1514

-0.2505
-0.3695
-0.5122
-0.6835
-0.8890
-1.1356

-4.9582

0.5000
0.6936
0.8618
0.9586
0.9928
0.9995
1.0
1.0
1.0
1.0

0.5000
0.6957
0.8606
0.9526
0.9876
0.9975
0.9996
1.0
1.0
1.0

1.0

0.5000
0.6955
0.8602
0.9529
0.9883
0.9979
0.9997
1.0
1.0
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TABLE 6 LINEAR BURGERS EQUATION

N FINITE-ELEMENT SPLINE FINITE - DIFFERENCE

10 165.38 37378(NC) 14.7

25 150.923 100632 (NC)

50 149.034 132,668 NC)

100 148.568 ' 144.137 (NC) 136.022

10 — 138.6 (C) —

10 — 149.115(C AVG.) —
(vUy, +2U) = &/’ AT THE BOUNDARY

10 165.38 151,552 (NC) 158 969
— 148486 (C) —
(vu,) = -e'? AT THE BOUNDARY

10 165.38 145.442 (NC) 139.296
— 148,342 (C) —

EXACT SOLUTION

Ug = 148.4, v=1/5
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TABLE 7

LINEARIZED CORNER | FLOW

METHOD

X
Y

0.0025

0.008I

0.0493

0.2575

L3117

EXACT SOLUTION

o =15, at=0.0l
kz E h2=.00|

Nx ’Ny =2l
t=2.0

0.0025
0.00s8l
0.0493
0.2575
1.3117
6.6485

0.9990
0.9968
0.9822

0.9685
0.9685
0.9685

0.9968
0.9896
0.9424

0.8978
0.8978
0.8978

0.9822
0.9424
0.6820
0.436|
0.4361
04361

0.9685
0.8978
0.4361
0.000l
0.0
0.0

0.9685 |
0.8978
0.436|

0.0
0.0
0.0

6.6485 |

0.9685

0.8978

0.4361
0.0
0.0
0.0

FINITE DIFFERENCE

0.0025
0.008lI
0.0493
0.2575
1.3117
6.6485

0.9990
09967
0.9818
0.968lI
0.9681
0.968|

0.9967
0.9893
0.9408
0.8966
0.8966
0.8966

0.9818
0.9408
0.6724

0.4275
0.4273
0.4273

0.9682
0.8967
0.4281
0.0007
0.0004
0.0004

0.968l1
0.8967
0.4279
0.0004
0.0
0.0

0.968|
0.8967
0.4279
0.0004
0.0
0.0

SPLINE 2

0.0025
0.008l
0.0493
0.2575
1.3117
6.6485

0.9990
0.9968
0.9821

09683
0.9683

0.9968
0.9895
0.9418

0.8973
0.8973

0.9683 /0.8973

0.9821
0.9419

0.4332

09684
0.8974

0.6790'0.4336
0.4330 '-.0005
0.4332i-.0003

.-.0003

0.9684
0.8974

04338
-.0003
0.0
0.0

0.9684
0.8974

0.4338

-.0003
0.0
0.0

SPLINE 4

0.0025
0.008I
0.0493
0.2575
1.307

6.6485

0.9865
0.9684

0.9684,

0.9990/0.9968
0.9968 0.9895
0.9822 /0.9423

0.8977
0.8977
0.8977

0.9822
0.9424
0.6820
0.4360

0.4358 .0.0003
0.435 8 0.0003

0.9685
0.8979

0.4366
0.0007

0.9685
0.8978
0.4364
0.0003 |

0.0

0.9685
0.8978
0.4364
0.0003
0.0

0.0

0.0




TABLE 8

SOLUTION OF THE LAPLACE

EQUATION
~ METHOD ~u450) ul5h)| & [ky [hy Ma
EXACT SOLUTION 3142 (0730410 0.1/0.1] 1O
FINITE OIFFERENCE 3.123 |0.7322
SPLINE 2 3.164 |0.7286
SPLINE 4X, SPLINE 2Y |3.154 |0.7295
SPLINE 4 3.142 |0.7304
EXACT SOLUTION 3.142 |0.5335(1.0/0.1/0.2] 2.0
| SPLINE 4 3.162 |0.5329
SPLINE 4X, SPLINE 2Y |3.193 |0.5277
FINITE DIFFERENGE 2.828%0.5401
EXACT SOLUTION 3,142 |0.9691 [1.7 0.1 |0.0ll 2.86
FINITE DIFFERENCE 3.189 |0.9686
SPLINE 2 3.175 |0.9687
SPLINE 4X, SPLINE 2Y [3.162 |0.9689
SPLINE 4 ) 3.137 |0.969I
EXACT SOLUTION 3.142 [0.9391 [1.7 (0.1 |002 273
FINITE OIFFERENCE 3.193 |0.938]|
SPLINE 2 3.177 (09384
SPLINE 4X, SPLINE 2Y  |3.164 |0.9387
EXACT SOLUTION 3.142 |0.7304 |17 |0.1 |0.1|28.66
FINITE DIFFERENCE 3.220 |0.7233
SPLINE 4X, SPLINE 2Y |(3.185 |07263
| SPLINE 4 3.130 |07313
EXACT SOLUTION 3.1416 (09691 (17,5 (0.1 [0.011.063
FINITE DIFFERENCE 3.1694 (0.9688 |
SPLINE 2 3.1676 |0.9688
SPLINE 4X, SPLINE 2Y |3.1551 |0.9689
spum-: 4 3, |4o4 0.9691

% EVALUATED BY 3-POINT END-DIFFERENCE FORMULA

45
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TABLE 9

POTENTIAL FLOW OVER A CIRCULAR

CYLINDER
METHOD ; 8 0 x/10 | 2#/10 | 3w /N0 | 4 7/10
EXACT SOLUTION 1.0500 | 2.0024 [1.9044 |[1.6200 | 1.1770 | 0.6188
28 =7 /10 1.2795 | 2.0611 |1.9602 |1.6674 | 1.2115 | 0.6369
h, =0.05 1.9428 | 2.4575 |2.3372 | 1.9881 | 1.4445 | 0.7594
o =17 38596 | 4.1187 |3.9171 (3.3321 (2.4209 | 1.2727
Lo 15-3285 9.3991 | 9.5055|9.0403 |7.6901 |5.5872 | 2.9374
| FINITE DIFFERENCE |1.0500 | 1.8626 [1.7714 |1.5069 |10948 |0.5757
| 1.2795 | 19365 [1.8417 |1.5667 | 1.1383 | 0.5985
1.9428 | 2.3597 [2.2442 | 1.9091 | 1.3871 | 0.7293 |
3.8596 | 40573 [3.8587 |3.2824 (2.3848 | |.2538
| 9.3991 |9.4618 |89987 |7.6547 | 5.5615 | 2.9239.
' SPLINE 2 1.0500 | 1.9249 [1.8307 |1.5573 |1.1314 |0.5948
3 1.2795 | 1.9821 |1.8851 |1.6035 | 1.1650 | 0.6125
1.9428(2.37262.2565 | 1.9195 | 1.3946 | 0.7332
3.8596 |4.0285 |3.8314 |3.2591 2.3679 | 1.2449
| 9.3991 | 9.4254 (8.9641 |7.6253 5.5401 |2.9126 |
" SPLINE 4 1.0500 [2.0089[1.9106 [1.6253 ' 1.1808 | 0.6208
| 1.2795 |2.0677|1.9665 [1.6728 1.2154 | 0.6390,
1.9428 |2.46392.3433/1.9934 1.4483|0.7614
3.8596 |4.1185 3.9169 (3.3319 2.4208 | |.2727
9.3991 [9.4760 9.0122 |7.6663 '5.5699|2.9283




TABLE 10 POTENTIAL FLOW OVER A CIRCULAR

Ly

CYLINDER
METHOD b8 o wmo ( 2w/10 : 31r/|o( 4w/10
EXACT SOLUTION | 1.0500 |2.0024 | 1.9044 1.6200 1.1770 0.6188
a8 =7/20 12795 (2.0611 '1.9602 |1.6674 12115 0.6369
' hp =0.05 1.9428 |2.4575 2.3372 19881 |1.4445 0.7594
o =17 3.8596 |4.1187 :3.9171 I3 3321 12.4209 |.2727
Maax = 15.3285 9.3991 {9.5055 9.0403 7.6901 55872 2.9374
FINITE DIFFERENCE |1.0500 [1.9246 1.8304 |1.5571 '1.1313 0.5949
1.2795 | 1.9830 |1.8859 |1.6043 1.1657 0.6130
19428 |2.3816 2.2650  1.9268 1.4000 .0.736l
3.8596 |4.0551 3.8566 (3.2807 2.3836 1.2532
9.3991 (9.4506 |8.9881 |7.6457 5.5549 2.9204
SPLINE 2 1.0500 | 1.9413 |1.8463 | 1.5706 1.1412 | 0.600|
12795 1.9986 |1.9008 1.6169 |1.1749 0.6178
1.9428|2.3898 2.2728 1.9334 |1.4048 |0.7387
3.8596 |4.0474 |3.8494 |3.2745 |2.3791 | 1.2509
9.3991 (9.4399 |8.9778 |7.6370 |5.5486 |2.9171
SPLINE 4 1.0500 {2.0094 [1.9111 |1.6257 [I1.1813 |0.6212
1.27 95 [2.0682 | 1.9670 |1.6732 |1.2158 |0.6394
1.9428 (24643 (2.3437 |1.9938 |1.4487 |0.7618
3.8596 (4.1188 |3.9172 (3.3323 |2.4211 |1.2730
9.3991 |9.4762 |9.0124 |7.6664 |5.5700 |2.9284




TABLE Il

SLIP VELOCITY ON
THE FRONT OF A

CIRCULAR CYLINDER

a8=7/10
8 | FD. |SPLINE 2 |SPLINE 4 | EXACT
x/10 |-0564|-0.594 |-0620 |-0.628
2w/10 |-1.073-1.130 |-1.179 |-1.176
37/10 |-1.477|-1.555 |-1.623 |-1.618
47/10 |-1.736|-1.828 |-1.908 |-1.902
57/10 |-1825 |- 1922 |-2.006 |-2.000
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TABLE

12

BLASIUS PROFILE: ¢ =10, h,=0.l, N=6I

f

fl

F.D.

SPLINE 2

SPLINE 4

 EXACT

FD.

'SPLINE 2

SPLINE 4

EXACT

0.1
0.2
0.4

0.6

0.8
1.0
1.5

2.0
4.0

6.0

0.002348
0.009392
0.037555

0.084399
0.149697

0.233026
0.515111

0.886938
2.784256

0.002348
0.009392
0.037551

0.084387
0.149673

0.232982
0.514990

0.886707
2.783770

4.783110

4.783607

0.009391
0.037549

0.084386
0.149675

0.232990,
0.515032

0.886798
2.783890

4.783220

0.002348/0.002348

0.00939!
0.037549

0.084386
0.149675

0.232990
0.51503 1

0.886796
2.783885

4.783217

0.046967
0.093923
0.187648

0.280651
0.372076

0.460788
0.661735

0.817023
0997824

1.0

10.046962

0.093908
0.187604

0.280563
0.371934

0.460583
0661379

0.816600
0.997790

1.0

0.046959
0.093905
0.187605

0.280576
0.371964

0.460633
0.661474

0816695
0.997771

1.0

0.046959
0.093905
0.187605

0.280575
0.371963

0.460632
0.661473

0.816694
0997770 |

1.0
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TABLE 13

BLASIUS PROFILE: o =10, h, =1.0, N=2I

f

fl

F.D.

SPLINE 2

SPLINE 4

EXACT

F.D.

SPLINE 2

SPLINE 4

EXACT

1.0
2.0

3.0
4.0

5.0

6.0

20.0

0.23859
090351

1.82705
2.82470
3.82500
4.82492

18.8249

0.23768
0.89181
1.79403
277982
3.77942
477947

187795

0.23490
0.88831

1.80274
2.78658
3.78874
4.78555
18.7857

0.23299
0.88679
179557
2.78389
3.78323

4.78322

18.78322

047718
0.85265
099444
1.00085
0.99975
1.00010

1.0

0.45853
0.81125
097059
099948
099999
1.00002

1.0

0.46175
0.81795
0.96996
099701
1.0000!
0.99989
1.0

0.46063
0.81669

0.96905
099777
099994
1.O

1.0
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TABLE 14

BLASIUS PROFILE.0=18/, ,h,=0.5, N=2I

f

fl

F. D.

SPLINE 2

SPLINE 4

EXACT

F.D.

SPLINE 2

SPLINE 4|

EXACT

0.5

1.4
2.4
3.4
4.4
5.4
19.4

0.05910

1.24551
2.21456
3.21568
421548

18.2155

0.05835 |0.05888
045557 10.45051

1.2253 |
2.17478
3.16972
4.16985
18.1698

045722
1.24067

2.19064
3.18422
4.18386
18.18380

0.05864
0.45072
1.23153
2.187147
3.18338
4.18322
18.18322

0.23642
064461
0.93527
1.00284
0.99940
1.00020

1.0

0.23230
0.6165|
0.89654
0.99037
1.00010
1.00001

1.0

0.23477
062568
090300
0.98802
0.99898
1.00003

0.23423
0.62439
0.90I07

0.98797
0.99940
099999

1.0

1.0




TABLE 15 f(0) FOR BLASIUS EQUATION
FINITE ],
6.0 0.\ 1.0 10.46972650469634 (0.469601 |6i1/61
200 | 1.0 | 1.O |0.528041 |0475357 |0476359 | 772l
5.66650.05| |.5 [0.516646 0470718 [0.466048 i1l
11.3330| O.1 1.5 106049558 ——————10493598 9/11
64344 0.2 1.5 0498214 ———10.455623| 7/8
13.365 0.0l l.8/| 0474643 ————0.469188 |13/2]
16.063 (0.05 |.8,| 0473974 —————10.469438 |10/21
19.400 | 0.5 l.8/| 0479715 |0.466839 |0.469509 | 772l
37.020| 0.5 l.8/2 0.551803 |0.460823 10.477930 | 5/21
53936 | 0.5 l.8/3 0.827648 |0.506798 |0.523256 | 5/21

£"(0) =0.469600 (ROSENHEAD )
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TABLE I6

STAGNATION POINT FLOW

(a) f"(0)

| " FINITE
6.0 |O.1 | 1.0 | 1.23257 | 1.23227 | 1.23258 |5I/61
20.0 | 1.0 | 1.0 | 1.O7167 | 1.20612 | 1.20882 |6/21
9.4448/0001/18,, | 1.26353 | 123604 | 123299 |l6/2|
19.40 |05 |18, | 1.24031 | 1.22764 | 1.23617 | 6/2
£"(0) =1.232588 (ROSENHEAD!®)) |

(b) f (hs)

FINITE | ue)
wx | "2 | @ loFFERENCE| SPLINE 2 |SPLINE 4 |ROSENHEAD
6.0 |0.1 | 1.0 |0.005915 |0.005995 | 0.005996 | 0.005996
20.0 | 1.0 | 1.0 {0.390440 | 0.436393 | 0.450482 | 0.459227
19.40 | 0.5 |.8,l 0.128780 |0.132622 | 0.135410| 0.133585
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100 x

4 o BURGERS EQUATION
O FINITE DIFFERENCE
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FIG. | NON-LINEAR BURGERS EQUATION. v=1/8, o =1



LAPLACE EQUATION

24 O FINITE DIFFERENCE (DERIVATIVE WITH SPLINE)

& SPLINE 2
@ SPLINE 4
rXole
|6 O
(0) (0 ©
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100 x| —. &y l
Uy o}

0.8[- 8
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o
O ¥ T ! ’ L
o) RelVié .02/17 .Ol/1.7/2 171.0 AT

h,/c

FIG. 2 LAPLACE EQUATION
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. 3 ERROR PLOT:@ BLASIUS EQUATION
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FIG.4 CONSTANT PRESSURE BOUNDARY LAYER SOLUTION - PHYSICAL

VARIABLES



